

# <page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header>





- Given a pixel in one image, we want to compute its correspondence to a pixel in the other image.
- Various techniques can be used to match pixels based on their local appearance.
- With additional information on positions and calibration data for cameras available.
- How can we exploit this information to reduce the number of potential correspondences and hence speed up the matching and increase its reliability?





Version: 09/06/1

j.muller@ucl.ac.uk

age













j.muller@ucl.ac.uk

Page 7

Version: 09/06/16

j.muller@ucl.ac.uk

Page 8

## **Image Rectification**

 The resulting standard rectified geometry is employed in a lot of stereo camera setups and stereo algorithms, and leads to a very simple inverse relationship between 3D depth, Z, and disparities d,

 $d = f^*B/Z$ 

where f is the focal length (measured in pixels), B is the baseline, and

x' = x + d(x, y), y' = y

 describes the relationship between corresponding pixel coordinates in the left and right images







- Feature-based stereo matching algorithms.
- Extract a set of potentially matchable image locations using either interest operators or edge detectors, then search for corresponding locations using a patch-based metric
- Better approaches focus on first extracting highly reliable features and then use these as seed-points to grow additional matches















.muller@ucl.ac.uk

age

### **Dense Correspondence**

- More stereo matching algorithms today focus on dense correspondence
- Dense correspondence algorithms consist of a set of modules,
  - matching cost computation
  - Cost aggregation
  - Disparity computation and optimization
  - Disparity refinement.
- For example, SSD, normalised cross-correlation, rank transform, etc.
- Hierarchical (coarse-to-fine) algorithms
- More recently, robust measures, including truncated guadratics and *contaminated* Gaussians, have been proposed,
  - to limit the influence of mismatches during aggregation









.muller@ucl.ac.uk

Page 11

Version: 09/06/16

j.muller@ucl.ac.uk

12

# Other methods: Shape from X

- In addition to binocular disparity, shading, texture, and focus all play a role in how we perceive depth/shape.
- Shape from shading: as the surface normal changes, the apparent brightness changes as a function of the angle between the local surface orientation and the incident illumination
- Shape from texture: algorithms require a number of processing steps, including the extraction of repeated patterns or the measurement of local frequencies in order to compute local affine deformations, and a subsequent stage to infer local surface orientation.
- Shape from focus: the amount of blur increases as the object's surface moves away from the camera's focusing distance



Stereo Reconstruction Applied to Mars Images

- Introduction to Mars 3D imaging data
- The difference between planetary and general stereo reconstruction methods
- DTM and orthorectified image









The difference between planetary and general stereo reconstruction methods

- Camera modelling
- Map projection
- Pre-processing (least squares bundle adjustment, normalisation, filtering)
- Area based matching
- Initial disparity estimation
- Pyramidal, tiled processing
- DTM and orthorectified image





Version: 09/06/1

j.muller@ucl.ac.ul

age 14





### Processing example and parameters

|                                                                                                                 | # Pre-Processing / stereo_pprc                                                                                              |     |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Interactive session</li> </ul>                                                                         | # Pre-alignment options                                                                                                     |     |
| # Integer Correlation / stereo corr                                                                             |                                                                                                                             |     |
| ***************************************                                                                         | # Available choices are (nowever not all are supported by all sessions);<br># NONE (Recommended for anything map projected) |     |
|                                                                                                                 | # EPIPOLAR (Recommended for Pinhole Sessions)                                                                               | ,   |
| # Select a cost function to use for initialization:                                                             | # HOMOGRAPHY (Recommended for ISIS and DG Sessions)<br>alignment-method homography                                          |     |
| # 0 - absolute difference (fast)                                                                                |                                                                                                                             | ź   |
| # 1 - squared difference (faster but usually bad)                                                               | # Intensity Normalization                                                                                                   | ,   |
| # 2 - normalized cross correlation (recommended)                                                                | rorce-use-entire-range # use entire input range                                                                             |     |
| cost-mode 0                                                                                                     | # Select a preprocessing filter:                                                                                            |     |
|                                                                                                                 |                                                                                                                             |     |
| # Initialization step: correlation kernel size                                                                  | # Ø - None                                                                                                                  |     |
| corr-kernel 25 25                                                                                               | # 1 - Subtracted Mean                                                                                                       |     |
|                                                                                                                 | # 2 - Laplacian of Gaussian (recommended)                                                                                   |     |
| # Initialization step: correlation search range                                                                 | prefilter-mode Z                                                                                                            |     |
| 2                                                                                                               | # Kernel size (1-signa) for pre-processing                                                                                  | ,   |
| # Uncomment the following to use explicit search ranges. Otherwise, a                                           | f                                                                                                                           | 1   |
| # value will be choosen for you.                                                                                | # Recommend 1.4 px for Laplacian of Gaussian                                                                                | i - |
| # corr-search -100 -100 100 100                                                                                 | # Recommend 25 px for Subtracted Mean<br>prefilter-kernel-width 1.4                                                         |     |
| # Subpixel Refinement / stereo_rfne                                                                             |                                                                                                                             | 2   |
| ***************************************                                                                         |                                                                                                                             |     |
| # Subpixel step: subpixel modes                                                                                 | Dimension State Constraints of Constants                                                                                    | £   |
| 4                                                                                                               | # Post Filtering / stereo_fltr                                                                                              | ÷., |
| # 0 - disable subpixel correlation (fastest)                                                                    | ***************************************                                                                                     |     |
| # 1 - parabola fitting (draft mode - not as accurate)                                                           | # Fill in holes on to 100 000 nivels in size with an innointing method                                                      |     |
| # 2 - affine adaptive window, bayes EM weighting (slower, but much more accurate)<br>subpixel-mode 2            | # disable-fill-holes                                                                                                        | 2   |
|                                                                                                                 | # Automatic "erode" low confidence pixels                                                                                   | ,   |
| # Subpixel step: correlation kernel size                                                                        | rm-half-kernel 5 5                                                                                                          | í.  |
| subpixel-kernel 25 25                                                                                           | rm-min-matches 60                                                                                                           |     |
| Tana and the standard | rm-threshold 3                                                                                                              |     |
|                                                                                                                 | rm-cleanup-passes 1                                                                                                         |     |
|                                                                                                                 | # Triangulation / stereo tri                                                                                                |     |
|                                                                                                                 | ***************************************                                                                                     |     |
|                                                                                                                 | n an an ann a' an an an an ann an a' an ann an                                                                              |     |
|                                                                                                                 | # Size max of the universe in meters and altitude off the ground.                                                           |     |
|                                                                                                                 | # Setting both values to zero turns this post-processing step off.                                                          |     |
| I-Mars.eu                                                                                                       | for universe rodius 0.0                                                                                                     |     |
|                                                                                                                 | rar-universe-rootus 0.0                                                                                                     |     |









i.muller@ucl.ac.uk

age 19

Introduction to CASP-GO

- General workflow
- Maximum likelihood sub-pixel refinement
- Outlier rejection schemes
- Gotcha (Adaptive Least Square Correlation with region growing) densification
- Co-kriging grid-point interpolation
- ORI co-registration and DTM adjustment







- Sub-pixel disparity maps obtained from the refined initial disparity map is still not perfect
- Two obvious problems are unmatched areas (no disparity available, i.e. errors of omission) and mismatched areas (wrong disparity, i.e. errors of commission).
- Matching search kernel vs. search range?
- Larger kernel + smaller search range + reject mis-matches





j.muller@ucl.ac.uk

bage 22







.muller@ucl.ac.uk

Page 23

# **Outlier Rejection Schemes**

- (a) disparity value differs than a threshold by a percentage of pixels in a kernel;
- (b) kernel with standard deviation higher than a threshold;
- (c) difference of the mean value of a kernel and neighbouring kernel is higher than a threshold;
- (d) kernel with a neighbouring kernel being rejected by a threshold percentage;
- (e) adjacent disparity values from (a), (b) and (c).





- (a) with given sub-pixel disparity values, retrieve seed tie-points (point correspondences) on the border (within 5-11 pixel width) according to the x and y translation (disparity); Version: 09/06/16
- (b) run ALSC on seed tie-points and store similarity value;
- (c) sort seed tie-points by similarity value;
- (d) a new matching is derived from the adjacent neighbours of the initial tie-point with highest similarity value;
- (e) if the new match is verified by ALSC then it is considered as seed tie-points in next growing;
- (f) this region growing process repeats from (c) to (e) until there are no more acceptable matches;
- (g) retrieve final disparity map after densification. i-Mars.eu









# ORI co-registration and DTM adjustment

- HiRISE and CTX datasets are generally not coregistered with the HRSC ORI/DTM (DLR processed v50 products) and MOLA dataset.
- The Mutual Shape Adapted Scale Invariant Feature Transform (MSA-SIFT) algorithm
- Take HRSC ORI as reference image for CTX ORI coregistration and subsequent shift of CTX DTM according to the CTX ORI to HRSC ORI transformation





Version: 09/06/16

j.muller@ucl.ac.uk

26 age

